Option Pricing

Quantitative Finance

2022-2023

Outline

1. Risk (definition and propoerties)
2. Options
3. Options strategies
4. Put-call parity
5. Options pricing

Rewind

Option strategies
 Payoff and profits

Rewind

A two-year European call option at 90 Euros strike is quoted at 5 Euros and a two-year European call option at 95 Euros strike is quoted at 5.1 Euros. Design a trading strategy to lock profits (as the two prices allow arbitrage!).

Pricing Options

Upper bounds on prices

$e \leqslant S(0) \quad[C \leqslant S(0)]$

Imagine that $e>S(0)$ we show that this leeds to an arbitrage portfolio, and therefore if means that the call option is overpriced, therefore I'm going to sell it:
$\left(\begin{array}{l}t=0)\end{array} \left\lvert\, \begin{array}{l}\text { Sell this option and receive }, \mathrm{c} \\ , ~ B u y ~ t h e ~ u n d e r l y i n g ~ s t o c k ~\end{array}\right.\right.$

$$
\begin{gathered}
(e-s(o)) \\
\downarrow
\end{gathered}
$$

Pricing Options

Upper bounds on prices $e \leqslant S_{(0)} \quad[C \leqslant S(0)]$

$t=0 \quad$| - Sell this option and receive c |
| :--- |
| Buy the underlying stock |
| $(e-S(0))$ |

$$
\left(e^{-s(0)}\right)
$$

$t=T \left\lvert\, \begin{gathered}\downarrow \\ \cdot S(T)<K: \begin{array}{l}\text { The option is not exercised } \\ \text { Profit: }(e-S(0)) e^{R T}+S(t)>0 \\ \cdot S(T)>K: \text { The option is exercised } \\ \text { Profit: }(e-S(0)) e^{R T}+K>0\end{array}\end{gathered}\right.$

Pricing Options

Lower bounds on prices $e \geqslant S(0)-K e^{-R T}$
Consider the folowing where: $\mathrm{c}=3, \mathrm{~S}=20 ; \mathrm{K}=18, \mathrm{R}=10 \%$ (per year); $\mathrm{T}=1$ year.
So we show that this leads to na arbitrage possibility.

$$
S(0)-K e^{-R T}=3,71
$$

with $e=3<3,71 \Rightarrow C<S(0)-K e^{-R T}$
Means that the option is underpriced then you want to buy it

Pricing Options

Lower bounds on prices $e \geqslant S_{(0)}-K_{\ell}-R T$

$$
f=0 \quad \begin{array}{l|l}
\text { r Short-Sell the stock and receive } S_{(0)}=20 \\
\text {, Using that money you buy the call option } \\
\text { You still have: } S_{(0)}-C=20-3=17
\end{array}
$$

\angle INVEST IN THEBAN
$t=T$

- $S(T)<18$: You do not exercise the option Profit: $18.79-5(T)>0$
- $S\left(T^{\cdot}\right)>18$: The option is exercised Profit: $18.79-18=0.79>0$

Pricing Options

Calls

The upper bound is $\mathrm{C} \leq \mathrm{S}$
If there are no dividend payouts, the lower bound is $C \geq \max \left[0, S-K e^{-r T}\right]$; i.e., $C \geq$ max [0, S-PV(K)]

Pricing Options

European Put Lower Bound
 $$
p \geqslant k e^{-R T}-S(0)
$$

What if: $\mathrm{p}<\mathrm{Ke}^{-\mathrm{rT}}-\mathrm{S}$?

$$
\begin{aligned}
& \text { Then, } \mathrm{p}-\mathrm{Ke}^{-\mathrm{rT}}+\mathrm{S}(0)<0 \\
& \text { Or, }-\mathrm{p}+\mathrm{Ke}^{-r T}-\mathrm{S}(0)>0
\end{aligned}
$$

At expiration:

Today		$\mathrm{S}_{\mathrm{T}}>\mathrm{K}$	$\mathrm{S}_{T}<\mathrm{K}$
Buy put	-p	0	$+\left(\mathrm{K}-\mathrm{S}_{\mathrm{T}}\right)$
Borrow	$+\mathrm{Ke}^{-r T}$	-K	-K
Buy stock	-S	$+\mathrm{S}_{T}$	$+\mathrm{S}_{\mathrm{T}}$
	>0	≥ 0	0

So, if $P<\mathrm{Ke}^{-r \mathrm{~T}}-\mathrm{S}(0)$, an arbitrage is possible, because the trader can receive a cash inflow today, and not have to pay money in the future (in fact, in some cases, the trader receives money in the future, too.

Outline

1. Risk (definition and propoerties)
2. Options
3. Options strategies
4. Put-call parity
5. Options pricing

Pricing Options

Put-call partity

Consider the following 2 portfolios:
Portfolio A: you own a call option and you have $\underline{\mathrm{Ke}^{-\mathrm{RT}}}$
Portfolio B: you own a put option and a share $\mathrm{S}_{(0)}$

at time T:

Value of portfolio $A=\max (S(t)-K, O)+K=\max (S(t), K)$
Value of portfolio $B=\max (k-S(t), 0)+S(+)=\max (K, S(t))$

So, as value (portfolio A) = (porfolio B) whatever happens, then they initial prices (by the non-dominance principle) have to be the same

Pricing Options

		$S_{T}>K$	$S_{T}<K$
Portfolio A	Call option	$S_{T}-K$	0
	Zero-coupon bond	K	K
	Total	S_{T}	K
Portfolio C	Put Option	0	$K-S_{T}$
	Share	S_{T}	S_{T}
	Total	S_{T}	K

Both are worth $\max \left(S_{T}, K\right)$ at the maturity of the options, they must therefore be worth the same today. This means that:

$$
c+K e^{-r T}=p+S_{(0)}
$$

Pricing Options

Put-call parity
Call option: $g(t)=(S(T)-K)^{+}$
Put option: $g(t)=\left(K-S(+1)^{+}\right.$

$$
e+K e^{-R T}=p+S(0)
$$

Total amount of money in order to buy a call option and be able to exercise it

Total amount of money in order to buy a put option and be able to exercise it

Put-Call parity is quite relevant, and in fact tell us that we only need to price "half" of the contracts.

Pricing Options

Put-call partity

We are assuming that there are no dividends distributed to the stockholders. In case you know that you will receive dividends, with present value equals to D

The put-call parity is changed, in order to take into account the dividend:

$$
c+K e^{-r T}=p+S_{(0)}-D
$$

Pricing Options

Put-call partity

Suppose that

$$
\begin{array}{ll}
c=3 & S_{0}=31 \\
T=0.25 & r=10 \% \\
K=30 & D=0
\end{array}
$$

What are the arbitrage possibilities when

$$
\begin{aligned}
& p=2.25 ? \\
& p=1 ?
\end{aligned}
$$

Pricing Options

Put-call partity

What if: $c-p>S-K e^{-r T}$?
Then: $\quad c-p-S+K e^{-r T}>0$

Today:		At Expiration:	
		$\mathrm{S}_{\mathrm{T}} \leq \mathrm{K}$	$\mathrm{S}_{T}>\mathrm{K}$
Sell call	+c	0	$-\left(\bar{S}_{T}-K\right)$
Buy put	-p	$+\left(\mathrm{K}-\mathrm{S}_{\mathrm{T}}\right)$	0
Buy stock	-S	$+S_{\text {T }}$	$+S_{\text {T }}$
Borrow	$+\mathrm{Ke}^{-r T}$	-K	-K
	>0	0	0

Therefore, if $\mathrm{c}-\mathrm{p}>\mathrm{S}-\mathrm{K}^{-\mathrm{rT}}$, an arbitrage is possible, because the trader receives a cash inflow today, but does not have a cash out-flow in the future.

Pricing Options

Put-call partity

$$
\begin{aligned}
& \text { Suppose } c=4.50, p=2.50, S=42, K=40, r=6 \%, T=3 \text { month, } K^{-r T}=39.40 \\
& C-P=4.5-2.5=2<S-\mathrm{Ke}^{-r T}=42-39.40=2.60 .
\end{aligned}
$$

		At Expiration:	
Today:		$\underline{S}_{\mathrm{T}}=\frac{37}{0}$	$\mathrm{~S}_{\mathrm{T}}=44$
Buy call	-4.50	-3	+4
Sell put	+2.50	-37	-44
Sell stock	+42.00	$\underline{+40}$	$\underline{+40}$
Lend	$\underline{-39.40}$	0	0

Pricing Options

Put-call partity

a) A European call option and an European put option on a stock that expires in one year have both a strike price of 44 Euros. The current stock price is 40 Euros and the one-year risk free interest rate is 10%. The price of the call is 10 Euros and the price of the put is 7 Euros. Design an arbitrage possibility
b) The present price of a stock is 50 . The price of a European call option with strike price 47.5 and maturity 180 days is 4.375 . The cost of a risk-free 1 euro bond 180 days is 0.98 . a) Consider a European put option with price 1.025 (same strike price and maturity as the call option). Show that this is inconsistent with put-call parity. b) Describe how you can take advantage of this situation, creating an arbitrage possibility example

Pricing Options

Put-call partity

- Rearrange, the basic put-call parity proposition to be $-\mathrm{c}=-\mathrm{S}+\mathrm{Ke}^{-r T}-\mathrm{p}$. This says that buying a call is like borrowing to buy stock; i.e., it is like buying stock on margin. But in addition, the call owner also owns a put, providing downside protection.
- If $r>0$, an at the money call is worth more than an at the money put with the same K and T.
- Given S, r, and T, then $c-p$ is known, regardless of the bullishness or bearishness that may pervade the market.
- You can replicate the payoff from any position with the other three securities (e.g. buying a put = selling stock, lending, and buying a call).

Pricing Options

Put-call partity

$$
\begin{aligned}
& S=c-p+K e^{-r T} \\
& -S=-c+p-K e^{-r T} \\
& -p=S-c-K e^{-r T} \\
& p=-S+c+K e^{-r T} \\
& c=S+p-K e^{-r T} \\
& -c=-S-p+K e^{-r T} \\
& K e^{-r T}=S-c+p \\
& -K e^{-r T}=-S+c-p
\end{aligned}
$$

Sell stock short = write call, buy put, \& borrow
Buy stock = buy call, write put \& lend
Buy put = sell stock short, buy call, \& lend
Write put = buy stock, write call, \& borrow
Write call = sell stock short, write put, \& lend
Buy call = buy stock, buy put, \& borrow
Riskless borrowing = sell stock short, buy call, \& write put
Riskless lending = buy stock, write call, \& buy put

Outline

1. Risk (definition and propoerties)
2. Options
3. Options strategies
4. Put-call parity
5. Options pricing

Pricing Options

Main Ideas:

- A financial derivative is defined in terms of some underlying asset which already exists on the market.
- The derivative cannot therefore be priced arbitrarily in relation to the underlying prices if we want to avoid mispricing between the derivative and the underlying price.
- We thus want to price the derivative in a way that is consistent with the underlying prices given by the market.
- We are not trying to compute the price of the derivative in some "absolute" sense. 'The idea instead is to determine the price of the derivative in terms of the market prices of the underlying assets.

Pricing Options

The Binomial model

The model is very easy to understand, almost all important concepts which we will study later on already appear in the binomial case, the mathematics required to analyse it is easy, and last but not least the binomial model is often used in practice.

Pricing Options

Assumptions of the Binomial Model

- There are two (and only two) possible prices for the underlying asset on the next date. The underlying price will either:

Increase by a factor of u\% (an uptick)
Decrease by a factor of d\% (a downtick)

- The uncertainty is that we do not know which of the two prices will be realized.
- No dividends.
- The one-period interest rate, r, is constant over the life of the option (r\% per period).
- Markets are perfect (no commissions, bid-ask spreads, taxes, price pressure, etc.)

Pricing Options

Consider a European call option, with an exercise price of 100 euro, with a maturity of 4 months. The current price of the underlying asset is 100 euro, the interest rate is 0% and the asset may rise 6.04% or fall 5.69%. A binomial model is considered, with a time interval of one month. In this case, the price of the underlying asset takes the following possible values:

The Binomial Option Pricing Model

We begin with a single period.

Then, we stitch single periods together to form the Multi-Period Binomial Option Pricing Model.

The Multi-Period Binomial Option Pricing Model is extremely flexible, hence valuable; it can value American options (which can be exercised early).

Pricing Options

Binomial Option-Pricing Model of Cox, Ross, and Rubinstein (1979):

- Consider One-Period Call Option On Stock XYZ
- Current Stock Price S_{0}
- Strike Price K
- Option Expires Tomorrow, $C_{1}=\operatorname{Max}\left[S_{1}-K, 0\right]$
- What Is Today's Option Price C_{0} ?

$$
S_{0}, C_{0}=? ? ?
$$

$$
S_{1}, C_{1}=\operatorname{Max}\left[S_{1}-K, 0\right]
$$

Pricing Options

Suppose $S_{0} \rightarrow S_{1}$ Is A Bernoulli Trial:

Pricing Options

Now What Should $C_{0}=f(\cdot)$ Depend On?

- Parameters: S_{0}, K, u, d, p, r

Consider Portfolio of Stocks and Bonds Today:

- Δ Shares of Stock, $\$ B$ of Bonds
- Total Cost Today: $V_{0}==S_{0} \Delta+B$
- Payoff V_{1} Tomorrow:

$$
r \equiv(1+r)
$$

TÉCNICO LISBOA

Pricing Options

Now Choose Δ and B So That:

$$
\left.V_{1} \underset{1-p}{p} d S_{0} \Delta+r \mathrm{~B}=C_{d}\right\} \quad u S_{0} \Delta+r \mathrm{~B}=C_{u}, \begin{aligned}
& \Delta^{*}=\left(C_{u}-C_{d}\right) /(u-d) S_{0} \\
& B^{*}=\left(u C_{d}-d C_{u}\right) /(u-d) r
\end{aligned}
$$

Then It Must Follow That:

$$
C_{0}=V_{0}=S_{0} \Delta^{*}+B^{*}=\frac{1}{r}\left(\frac{r-d}{u-d} C_{u}+\frac{u-r}{u-d} C_{d}\right)
$$

Pricing Options

Suppose $C_{0}>V_{0}$

- Today: Sell C_{0}, Buy V_{0}, Receive $C_{0}-V_{0}>0$
- Tomorrow: Owe C_{1}, But V_{1} Is Equal To C_{1} !

Suppose $C_{0}<V_{0}$

- Today: Buy C_{0}, Sell V_{0}, Receive $V_{0}-C_{0}>0$
- Tomorrow: Owe V_{1}, But C_{1} Is Equal To V_{1} !
$C_{0}=V_{0}$, Otherwise Arbitrage Exists

$$
C_{0}=V_{0}=S_{0} \Delta^{*}+B^{*}=\frac{1}{r}\left(\frac{r-d}{u-d} C_{u}+\frac{u-r}{u-d} C_{d}\right)
$$

Pricing Options

Note That p Does Not Appear Anywhere!

- Can disagree on p, but must agree on option price
- If price violates this relation, arbitrage!
- A multi-period generalization exists:

$$
\begin{aligned}
C_{0} & =\frac{1}{r^{n}} \sum_{k=0}^{n}\binom{n}{k} p^{* k}\left(1-p^{*}\right)^{n-k} \operatorname{Max}\left[0, u^{k} d^{n-k} S_{0}-K\right] \\
p^{*} & \equiv \frac{r-d}{u-d}
\end{aligned}
$$

- Continuous-time/continuous-state version (Black-Scholes/Merton):

$$
\begin{aligned}
\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}} & +r S \frac{\partial C}{\partial S}+\frac{\partial C}{\partial t}=r C \\
C(S, T) & =\operatorname{Max}[S-K, 0] \\
C(0, t) & =0
\end{aligned}
$$

Pricing Options

Example

$S_{0}=40, u=25 \%, d=-10 \%, r=5 \%, K=45$,

What are the values of Δ, B, and C_{0} ?

What if $\mathrm{C}_{0}=3$?
What if $\mathrm{C}_{0}=1$?

Pricing Options

Let's go for another model description:
Running time is denoted by the letter t, and by definition we have two points in time, $\mathrm{t}=0$ ("today") and $\mathrm{t}=1$ ("tomorrow"). In the model we have two assets: a bond and a stock. At time t the price of a bond is denoted by B_{t}, and the price of one share of the stock is denoted by S_{t}. Thus we have two price processes B and S.

The bond price process is deterministic and given by:

$$
\begin{aligned}
& B_{0}=1 \\
& B_{1}=1+r .
\end{aligned}
$$

The constant R is the spot rate for the period, and we can also interpret the existence of the bond as the existence of a bank with R as its rate of interest.

The stock price process is a stochastic process, and its dynamical behaviour is described as follows: $S_{0}=s$,

The Option Pricing 'Process'

Portfolios and arbitrage

We will study the behaviour of various portfolios on the (B, S) market, and to this end we define a portfolio as a vector $h=(x, y)$. The interpretation is that x is the number of bonds we hold in our portfolio, whereas y is the number of units of the stock held by us.

Now let h be a portfolio, assume that at time $t=0$, this portfolio is composed by y_{0} Shares of stock, x_{0} of Bonds where $x_{0}=-y_{0} S_{0}$

- $\mathrm{h}_{0}=\left(-\mathrm{y}_{0} \mathrm{~S}_{0}, \mathrm{y}_{0}\right) \Longrightarrow \mathrm{V}_{0}^{h}=0$

Now we see how the portfolio evolves.
At time $\mathrm{T}=1$

$$
\left.h_{0}\left(-y_{0} s_{0}, y_{0}\right) \stackrel{>}{ }\left(-y_{0} s_{0}(n+r), \varphi_{0} s_{0} u\right)\right)
$$

The Option Pricing 'Process'

$$
\begin{aligned}
& U_{1}^{h}=\left\{\begin{array}{l}
-y_{0} S_{0}(1+r)+y_{0} S_{0} \mu \\
-Y_{0} S_{0}(1+r)+y_{0} S_{0} d
\end{array}\right. \\
&=S_{0} y_{0}\left\{\begin{array}{l}
-(1+r)+u>0 \\
-(1+r)+d<0
\end{array}\right.
\end{aligned}
$$

If $y_{0}>0$ then the value of the portfolio V_{Λ}^{h} is positive with probability p_{u} and it is negative with probability p_{d}, meaning that this is not an arbitrage portfolio.

The Option Pricing 'Process'

If $\mathrm{y}_{0}<0$ then...

So far the non-arbitrage condition involves only u and d. So what is the role of p_{u} and p_{d} ? We will see that the result of the the price of the contingent claim do not depend on p_{u} and p_{d}.

Some consequences of: $0<d<1+r<\mu$

It follows that we may write $1+r$ as: $1+r=q_{u} \cdot u+q_{d} \cdot d$,
where $\mathrm{q}_{u}, \mathrm{q}_{d} \geq 0$ and $\mathrm{q}_{u}+\mathrm{q}_{d}=1$
In particular we see that the weights q_{u} and q_{d} can be interpreted as probabilities for a new probability measure Q

So: $\quad 1+\pi=q \cdot \mu+(1-q) d$ with $q \in(0,1)$ this mean that $\theta=(9,1-9)$, this is probabicictu Function and this is unique:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 1 + r = q _ { u } \mu + q _ { d } d } \\
{ q _ { m } + q _ { d } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
q_{\mu}=\frac{(1+r)-d}{\mu-d} \\
q_{d}=\frac{\mu-(1+r)}{\mu-d}
\end{array}\right.\right. \\
& Q=\left(\frac{n+r-d}{\mu-a} ; \frac{\mu-(1+r)}{\mu-a}\right) \Rightarrow \underset{\text { MARINGGALE }}{\text { PROBABLLLY }}
\end{aligned}
$$

Pricing Options

Due to the definition of Q, it follows that:
S_{0} is given
S_{1} is a random variable

$$
\begin{aligned}
&=s_{0} z \text { with } z\left\{\begin{array}{l}
\mu \\
d
\end{array}\right. \\
& E^{P}\left[S_{1}\right]=P_{\mu} S_{0} u+P_{d} S_{0} d \quad P=\left(P_{\mu}, P_{d}\right) \\
& E^{Q}\left[S_{1}\right]=q_{\mu} S_{0} u+q_{d} S_{0} d \quad Q=\left(\frac{1+r-d}{\mu-d} ; \frac{\mu-(1+r)}{\mu-a}\right) \\
&=\frac{1+r-d}{\mu-d} S_{0 \mu}+\frac{\mu-(1+r)}{\mu-d} S_{o d} \\
&=\frac{S_{0}}{\mu-d}(1+r)(\mu-\alpha)=S_{o}(1+r)
\end{aligned}
$$

Pricing Options

$S_{0}=\frac{1}{1+r} E^{Q}\left[S_{1}\right] \quad\left(\approx E^{Q}\left[S_{1}\right]=(1+r) S_{0}\right.$

It means that under Q (martingale probability) today's stock price as the discounted expected value of tomorrow's stock price.

Price of contingent claims

Imagine that $x=g\left(S_{T}\right)$ is an option, with contract function g

$$
Q=\left(q_{u}, q_{d}\right): \underset{\substack{\text { Martingale } \\ \text { probabinay }}}{ }
$$

\downarrow
Payoff of X_{1} WiCK dEPENDS ONTHE VAluE of $S t$

Price of contingent claims

How do we price this contingent claim?

By two ways:

- By replicating portfolio
- By risk neutral measure (Q)

Replicating Portfolio

We say that h is a replicating portfolio of x (derivative, contingent claim, the option) if:

$$
V_{t}^{h}=X \text { with proBABility ONE }
$$

So how do we build this replicating portfolio ?

Price of contingent claims

How do we price this contingent claim?

$$
\begin{array}{ll}
s_{0}<s_{0, u} & g\left(s_{0} \mu\right)
\end{array} \quad h=\left\{\left(x_{t}, y_{t}\right), t \in\{0,1\}\right\} \text { such that } \quad v_{0, d} \frac{g\left(s_{0} d\right)}{x} \quad V_{1}^{h}=g\left(s_{1}\right), \text { ie: ho }=(x, y)
$$

thew:

$$
\left.\begin{array}{l}
\text { Then: } \\
\qquad(1+r) x+y u s_{0}=g\left(s_{0} u\right) \\
\left\{(1+r) x+y \cdot d s_{0}=g(\text { sod })\right.
\end{array} \quad \text { SolvinG For } x, y\right)
$$

Price of contingent claims

Because $d<1+r<u$ this system as one and only one solution ie, you start with

$$
x=\frac{1}{1+r} \frac{\operatorname{ug}(\text { sod })-d g(\text { sou) }}{u-d} \text { in the bank }
$$

and with

$$
y=\frac{1}{s o} \quad \frac{g\left(s_{0} u\right)-g\left(s_{0} d\right)}{m-d} \quad \text { stools }
$$

wish mEans that your initial investment is:

$$
x+450
$$

then

$$
\pi(0 ; x)=v_{0}^{h}=x+y 50
$$

Price of contingent claims

Example $u=1,2 \quad d=0,8 \quad r=0 \quad$ calloption

$$
k=110
$$

$$
\begin{aligned}
& x=\frac{1}{1+0} \quad \frac{1,2 \times 0-0,8 \times 10}{1,2-0,8}=-20 \\
& y=\frac{1}{100} \quad \frac{10-0}{1,2-6,8}=0,25
\end{aligned}
$$

Price of contingent claims

How to price contracts with more then 1 time-step?

$$
\left.\begin{array}{l}
x_{1}=\frac{1,2 \times 0-0,8 \times 34}{0,4}=-68 \\
y_{1}=\frac{1}{120} \frac{34-0}{0,4}=0,7083
\end{array}\right\} \text { value }=16,996
$$

Price of contingent claims

How to price contracts with more then 1 time-step?

$$
\left.\begin{array}{l}
x_{2}=0 \\
y_{2}=0
\end{array}\right\} \text { Value }=0
$$

Price of contingent claims

How to price contracts with more then 1 time-step?

(64) 0

$$
\left.\begin{array}{l}
x_{3}=\frac{1,2 \times 0-0,8 \times 16,996}{0,4}=-33,992 \\
y_{3}=\frac{1}{100} \frac{16,996-0}{0,4}=0,4249
\end{array}\right\}-33,993+94249 \times 100
$$

Price of contingent claims

Risk Neutral Measure
Returning to the example: $u=1,2 \quad d=0,8 \quad R=0$

It is possible to compute the martingale probabilities

$$
\begin{aligned}
& \text { It is possible to compute the martingale probabilities } \\
& Q=\left(\frac{1+r-d}{\mu-d} ; \frac{\mu-(1+\tau)}{\mu-d}\right)=\left(\frac{1-0,8}{0, n}=0,5 ; 0,5\right)
\end{aligned}
$$

Using the Formula $E^{Q}\left[S_{1}\right]=(1+r) S_{0}$

Price of contingent claims

$$
\begin{aligned}
E^{Q}[x] & =E^{Q}\left[g\left(s_{1}\right)\right]=g(s 0 m) q_{M}+g(s o d) q_{d} \\
& =10 \times 0,5+0 \times 0,5=5
\end{aligned}
$$

ie. the price of an option X, with contract function $g(S t)$ is equal to:

$$
(1+\Omega)^{-T} E^{Q}\left[g\left(s_{t}\right)\right]
$$

Let's see for 2 time-step?

Price of contingent claims

$$
\begin{aligned}
\pi(0 ; x)=E^{Q}\left[g\left(s_{1}\right)\right]= & 34 \times 0,5 \times 0,5+0 \times 0,5 \times 05 \times 2 \\
+ & \left.0 \times 0,5 \times 0,5 \times 90^{2}\right)=8,5(0 \times 2 \times 9,98) \\
& \left(0 \times 90^{2}\right)
\end{aligned}
$$

Price of contingent claims

In general if we have T time steps, the price of a derivative X will be the following:

$$
\begin{gathered}
\pi(0 ; x)=(1+r)^{-T} E^{Q}\left[g\left(s_{t}\right)\right] \\
=\left(\frac{1}{1+r}\right)^{T} \sum_{k=0}^{T} g\left(s_{0} \mu^{k} d^{T-k}\right)\binom{+}{k}\left(q_{u}\right)^{k}\left(q_{d}\right)^{T-k}
\end{gathered}
$$

Price of contingent claims
In the binomial model we are assuming that r, u and d keep constant for all time steps. But we can relax that assumption.

Price of contingent claims

$$
\begin{aligned}
& \text { Fix R: } \Pi(0, x)=(1+R)^{-2} \sum_{k=0}^{1} g\left(s_{0} m^{k} d^{1-1<}\right)\left(\frac{1}{k}\right) \times \\
& \times q^{k} q_{d}^{1-k} \\
& q_{u}=\frac{1+R-d}{\mu-d} \quad, \quad q_{d}=\frac{v-(n+r)}{\mu-d}
\end{aligned}
$$

Price of contingent claims
with R_{1} awn R_{2}

$$
\begin{aligned}
& \pi(0, x)=\frac{1}{\left(1+e_{1}\right)} \frac{1}{\left(1+a_{2}\right)} \times\left[g\left(s_{0} u^{2}\right) q_{u}^{1} \times q_{u}^{2}+\right. \\
& +g\left(s_{0} u d\right)\left(q_{u}^{1} \times q_{d}^{2}+q_{d}^{1} \times q_{u}^{2}\right) \\
& \left.+g\left(s_{0} d^{2}\right) q_{d}^{1} \times q_{d}^{2}\right]
\end{aligned}
$$

Price of contingent claims
RECAP:
$X \rightarrow$ Contingent Claim
$X=g(S t)$ whin $S T$ is the stock pure at time T
$\Pi(0 ; x)$: price ("pain") of the contingent claim X at time 0
St : is the result of the evolution of the stock prier from time 0 to time T

Price of contingent claims
In the binomial tree we are able to "plot" all possible realizations of the stock price from time 0 to time T. Each possible realization is called a "sample path".

Binomide model

Price of contingent claims

Under the binomial model we are able to price any contract. But we assume a particularly simple model:

- Discretization of the time
- The price, at each time step, is only allowed to go up by u, or go down, by d

What appends if we let:

- Time lag tends to zero?
- What is the consequence in the variations of the stock price?

In fact we want to be able to derive a model in continuous time, with continuous state space

Price of contingent claims
discrete state space
Continuous staitsamere
(BinOMiAR TWDER), (BLACK-ShOLES TODFA)

$$
\Pi(0 ; x)=\left(\frac{1}{1+2}\right)^{+} E^{Q}\left(g\left(s_{t}\right)\right) \quad, \quad \pi(0 ; x)=e^{-R T} E^{Q}[g(s t)]
$$

Risk nosiran Forruzs

TOOLS: STOCASTIC CRLCULOUS

1. exercise

Suppose that in each year the cost of a security either goes up by a factor of 2 or down by a factor of $1 / 2$ (i.e., $u=2$ and $d=0.5)$. Assume a continuously compounding euro interest rate of 4%.
a) If the initial price of the security is 100 , determine the non-arbitrage cost of an European call option to purchase the security at the end of two periods for a strike price of 150 .
b) Assume that your option is American. Should you exercise early?

2. exercise

Consider a option such that the payoff at the maturity is given by $\max \left(0.5\left(S_{0}+S_{T}\right)-K, 0\right)$, where $S_{0}\left(S_{T}\right)$ denotes the stock price at initial time (maturity) and K is the strike price. Assume a binomial model, with $S_{0}=40, u=1.3, d=0.8, K=45$ and 2 years maturity. The interest rate changes with time, in the following way: in the first year it is 3% and in the second year it is 4%.
a) Derive the price of this option.
b) Assume that the option can be exercised at the end of the first year or at maturity. When will it be optimal to exercise?

3. exercise

Suppose that c_{i} is the price of an European call option with maturity T and strike price K_{i}, with $i=1,2,3$. Assume that $K_{1}<K_{2}<K_{3}$, with $K_{2}=\frac{K_{1}+K_{3}}{2}$. Consider a porfolio consisting of one long position with strike price K_{1}, one long position with strike price K_{3} and two short positions with strike price K_{2}, each.
a) Give the payoff at the maturity date T of this portfolio.
b) Prove that $c_{2} \leq 0.5\left(c_{1}+c_{3}\right)$.

4. exercise

A one-month European put option on a non-dividend-paying stock is currently selling for $2.5 €$. The stock price is $47 €$, the strike price is $50 €$, and the risk-free interest rate (monthly compounded) is 6% per annum. What opportunities are there for an arbitrageur?

5. exercise

A European call and put option on the same security both expire in three months, both have a strike price of $20 €$, and both are traded for the price $3 €$. If the nominal continuously compounded interest rate is 10% and the stock price is currently $25 €$, identify an arbitrage.

6. exercise

Suppose that $T=2$, and that the initial price of the stock is $S_{0}=100$. Assume that it the price may go up by a factor $u=1.5$ or by a factor $d=1.1$, and that the strike price, K, is equal to 150 . Assume a risk-free rate of 20%. Prove that the non-arbitrage price of this call is 7.16 .

7. exercise

Consider a two-year European put-option, with a strike price of $52 €$ on a stock whose current price is $50 €$. We suppose that there are two time steps of one year, and in each time step the stock price either moves up, by a proportional amount of 20%, or moves down, by a proportional amount of 20%. We also suppose that the risk-free interest rate is 5% per annum (you may assume 1-year compounded).
a) Derive the fair price of this option.
b) Now assume that this option is an American one. Describe then what is the optimal decision. In particular, when is early-exercise optimal? Derive also the value of this put.

